117 research outputs found

    A new population of terrestrial gamma-ray flashes in the RHESSI data

    Get PDF
    Terrestrial gamma-ray flashes (TGFs) are the most energetic photon phenomenon occurring naturally on Earth. An outstanding question is as follows: Are these flashes just a rare exotic phenomenon or are they an intrinsic part of lightning discharges and therefore occurring more frequently than previously thought? All measurements of TGFs so far have been limited by the dynamic range and sensitivity of spaceborne instruments. In this paper we show that there is a new population of weak TGFs that has not been identified by search algorithms. We use the World Wide Lightning Location Network (WWLLN) to identify lightning that occurred in 2006 and 2012 within the 800 km field of view of Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). By superposing 740,210 100 ms RHESSI data intervals, centered at the time of the WWLLN detected lightning, we identify at least 141 and probably as many as 191 weak TGFs that were not part of the second RHESSI data catalogue. This supports the suggestion that the global TGF production rate is larger than previously reported

    Meter-scale spark X-ray spectrumstatistics

    Get PDF
    X-ray emission by sparks implies bremsstrahlung from a population of energetic electrons, but the details of this process remain a mystery. We present detailed statistical analysis of X-ray spectra detected by multiple detectors during sparks produced by 1 MV negative high-voltage pulses with 1 μ\mus risetime. With over 900 shots, we statistically analyze the signals, assuming that the distribution of spark X-ray fluence behaves as a power law and that the energy spectrum of X-rays detectable after traversing ∼\sim2 m of air and a thin aluminum shield is exponential. We then determine the parameters of those distributions by fitting cumulative distribution functions to the observations. The fit results match the observations very well if the mean of the exponential X-ray energy distribution is 86 ±\pm 7 keV and the spark X-ray fluence power law distribution has index -1.29 ±\pm 0.04 and spans at least 3 orders of magnitude in fluence

    The Hall current system revealed as a statistical significant pattern during fast flows

    Get PDF
    We have examined the dawn-dusk component of the magnetic field, <I>B<sub>Y</sub></I>, in the night side current sheet during fast flows in the neutral sheet. 237 h of Cluster data from the plasma sheet between 2 August 2002 and 2 October 2002 have been analysed. The spatial pattern of <I>B<sub>Y</sub></I> as a function of the distance from the centre of the current sheet has been estimated by using a Harris current sheet model. We have used the average slopes of these patterns to estimate earthward and tailward currents. For earthward fast flows there is a tailward current in the inner central plasma sheet and an earthward current in the outer central plasma sheet on average. For tailward fast flows the currents are oppositely directed. These observations are interpreted as signatures of Hall currents in the reconnection region or as field aligned currents which are connected with these currents. Although fast flows often are associated with a dawn-dusk current wedge, we believe that we have managed to filter out such currents from our statistical patterns

    Simultaneous measurements of X-rays and electrons during a pulsating aurora

    Get PDF

    Dynamic effects of restoring footpoint symmetry on closed magnetic field lines

    Get PDF
    Here we present an event where simultaneous global imaging of the aurora from both hemispheres reveals a large longitudinal shift of the nightside aurora of about 3 h, being the largest relative shift reported on from conjugate auroral imaging. This is interpreted as evidence of closed field lines having very asymmetric footpoints associated with the persistent positive y component of the interplanetary magnetic field before and during the event. At the same time, the Super Dual Auroral Radar Network observes the ionospheric nightside convection throat region in both hemispheres. The radar data indicate faster convection toward the dayside in the dusk cell in the Southern Hemisphere compared to its conjugate region. We interpret this as a signature of a process acting to restore symmetry of the displaced closed magnetic field lines resulting in flux tubes moving faster along the banana cell than the conjugate orange cell. The event is analyzed with emphasis on Birkeland currents (BC) associated with this restoring process, as recently described by Tenfjord et al. (2015). Using data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) during the same conditions as the presented event, the large-scale BC pattern associated with the event is presented. It shows the expected influence of the process of restoring symmetry on BCs. We therefore suggest that these observations should be recognized as being a result of the dynamic effects of restoring footpoint symmetry on closed field lines in the nightside

    How the IMF By\mathit{B}_{y} Induces a Local By\mathit{B}_{y} Component During Northward IMF Bz\mathit{B}_{z} and Characteristic Timescales

    Full text link
    We use the Lyon-Fedder-Mobarry global magnetohydrodynamics model to study the effects of the interplanetary magnetic field (IMF) By\mathit{B}_{y} component on the coupling between the solar wind and magnetosphere-ionosphere system when IMF Bz\mathit{B}_{z} >>0. We describe the evolution of how a magnetospheric By\mathit{B}_{y} component is induced on closed field lines during these conditions. Starting from dayside lobe reconnection, the magnetic tension on newly reconnected field lines redistribute the open flux asymmetrically between the two hemispheres. This results in asymmetric magnetic energy density in the lobes. Shear flows are induced to restore equilibrium, and these flows are what effectively induces a local By\mathit{B}_{y} component. We show the radial dependence of the induced By\mathit{B}_{y} and compare the results to the induced By\mathit{B}_{y} during southward IMF conditions. We also show the response and reconfiguration time of the inner magnetosphere to IMF By\mathit{B}_{y} reversals during northward IMF Bz\mathit{B}_{z}. A superposed epoch analysis of magnetic field measurements from seven Geostationary Operational Environmental Satellite spacecraft at different local times both for negative-to-positive and positive-to-negative IMF By\mathit{B}_{y} reversals is presented. We find that the induced By\mathit{B}_{y} responds within 16 min of the arrival of IMF By\mathit{B}_{y} at the bow shock, and it completely reconfigures within 47 min

    Competition of ferromagnetic and antiferromagnetic spin ordering in nuclear matter

    Get PDF
    In the framework of a Fermi liquid theory it is considered the possibility of ferromagnetic and antiferromagnetic phase transitions in symmetric nuclear matter with Skyrme effective interaction. The zero temperature dependence of ferromagnetic and antiferromagnetic spin polarization parameters as functions of density is found for SkM∗^*, SGII effective forces. It is shown that in the density domain, where both type of solutions of self--consistent equations exist, ferromagnetic spin state is more preferable than antiferromagnetic one.Comment: 9p., 3 figure
    • …
    corecore